Simulation of Droplet Breakup by Dissipative Particle Dynamics
Jacob Wagner, Rongzhi Huang, Mikio Yamanoi, João Maia

Department of Polymer Science & Engineering
Case Western Reserve University, Cleveland, OH 44106

ABSTRACT

This project applies a new DPD simulation method developed by the Maia group with a tunable coarse-grained level to capture the physics of droplet breakup in micro- and nano-emulsions. The droplet breakup phenomenon is described based on the viscosity ratio of the phases and the capillary number, a ratio of shear stresses to pressure. Viscosity was modified by taking advantage of the Fluctuation-Dissipation theorem. We have found that DPD can qualitatively reproduce the Grace plot for Newtonian fluids under shear.

METHODS

• Dissipative Particle Dynamics (DPD)
 • Governed by Langevin
 • Fewer interactions
 • Coarse-grained
 • Cut-off radius
 • Can use long time step
 • Soft potentials
 • Study mesoscopic phenomena
• Droplet break-up
 • Important for any mixing operation
 • Food
 • Cosmetics
 • Pharmaceuticals
 • Oil recovery or clean-up
 • Experimentally described by Grace in the 1980s
 • Not yet fully described by simulation

RESULTS

Important Characteristics:
1) Gentle slope from left
2) Minimum near Viscosity Ratio = 1
3) Sharp increase on right

RESULTS

FUTURE WORK

• Improve “one parameter” (σ and γ) results
• Only change conservative force parameter
• Combine conservative force change with σ and γ
• Consider extensional flows
• Consider non-Newtonian fluids
• Consider polymeric materials

REFERENCES

CONCLUSIONS

• The material properties that we verified were
 • Newtonian fluid
 • Interfacial tension is shear independent
 • Viscosity fits to activation energy

• Ways to describe droplet breakup
 • 2 Parameter: Qualitatively correct behavior
 • 1 Parameter: Limited viscosity range