PHYS 449

Syllabus: What is taught in this course will depend in part on the interests and backgrounds of the students. The intent is to give students a good grounding in analytic, numerical and mixed analytic/numeric techniques of mathematical physics. Likely topics include:

Solution techniques for Ordinary Differential Equations
Complex Variables, analytic functions, and Integration
 - Analytic functions, simple and complicated partial fractions
 - Deforming analytic and numerical integrals in the complex plane to evaluate them or make them easier to approximate (analytically or numerically)
Integration
 - Various techniques for calculating integrals, including moment generating functions
Asymptotic analysis
 - Asymptotic analysis of sums, integrals and ordinary differential and difference equations
 - Analysis of an integral representation of a special function as an example of an asymptotic expansion
 - Use of complex analysis to improve analytic and numeric calculations of sums and integrals
 - The principle of asymptotic balance, boundary layer theory, asymptotic matching, global asymptotic analysis
 - Analysis of asymptotic series, including Pade approximates, two-point Pade’s, Borel resummation.
 - Finding accurate approximations to complex functions / integrals simply so they can be evaluated quickly in numerically in “inner loops”
 - Multiple time scale analysis
Transform techniques
 - Fourier Transforms, fast fourier transforms and applications
 - Convergence of various transform methods for representing functions
 - Transform techniques in partial differential equations
Group Theory?