Gravitational Experiments and Lorentz Violation

Jay D. Tasson
V. Alan Kostelecký
Indiana University
outline

- introduction
 - motivation
 - Standard-Model Extension (SME)
- recent gravitational tests
- Lorentz violation in matter-gravity couplings\(^1,2\)
 - theoretical analysis
 - new sensitivities in gravitational experiments

1) Kostelecký, Tasson PRL ’09
2) Kostelecký, Tasson in preparation
motivation

• General Relativity and the Standard Model describe known physics.

• new physics at the Planck scale \(10^{19} \text{ GeV}\)

• options for probing such high energies
 – galaxy-sized accelerator
 – suppressed effects
 in sensitive experiments

Lorentz violation
 • can arise in theories of new physics
 • difficult to mimic with conventional effects
Standard-Model Extension (SME)

effective field theory which contains:

- General Relativity (GR)
- Standard Model (SM)
- arbitrary coordinate-independent Lorentz violation
 \[L_{\text{SME}} = L_{\text{GR}} + L_{\text{SM}} + L_{\text{LV}} \]
- as a subset, other test frameworks

Lorentz-violating terms

- constructed from GR and SM fields
- parameterized by coefficients for Lorentz violation
- samples

Colladay & Kostelecký PRD ’97, ’98 Kostelecký PRD ’04
What is Lorentz violation?

consider the flat spacetime example $$\hat{A}b \circ 5^\circ 1 \hat{A}$$
under an observer Lorentz transformation (rotation)

physics is unchanged
What is Lorentz violation?

consider the flat spacetime example \(\hat{A}b \circ 5^\circ \hat{A} \)
under a particle Lorentz transformation (rotation)

Lorentz violation!
ongoing searches with...

$$L_{LV} = L_{pure\, gravity} + L_{fermion} + L_{photon} + \cdots$$
ongoing searches with...

\[L_{LV} = L_{pure\, gravity} + L_{fermion} + L_{photon} + \cdots \]

Tests based on

Physical Review D 74, 045001 (2006)

Signals for Lorentz violation in post-Newtonian gravity

Quentin G. Bailey and V. Alan Kostelecký

Physics Department, Indiana University, Bloomington, Indiana 47405, USA

(Received 14 March 2006; published 1 August 2006)
ongoing searches with...

\[L_{LV} = L_{\text{pure gravity}} + L_{\text{fermion}} + L_{\text{photon}} + \cdots \]

Tests based on

Physical Review D 74, 045001 (2006)

Signals for Lorentz violation in post-Newtonian gravity

Quentin G. Bailey and V. Alan Kostelecký

Physics Department, Indiana University, Bloomington, Indiana 47405, USA

(Received 14 March 2006; published 1 August 2006)

Results to date

Physical Review Letters

PRL 99, 241103 (2007)

Testing for Lorentz Violation: Constraints on Standard-Model-Extension Parameters via Lunar Laser Ranging

James B. R. Battat, John F. Chandler, and Christopher W. Stubbs

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

(Received 6 September 2007; published 13 December 2007)
ongoing searches with...

\[L_{LV} = L_{\text{pure gravity}} + L_{\text{fermion}} + L_{\text{photon}} + \ldots \]

Tests based on

Physical Review D 74, 045001 (2006)

Signals for Lorentz violation in post-Newtonian gravity

Quentin G. Bailey and V. Alan Kostelecký

Physics Department, Indiana University, Bloomington, Indiana 47405, USA

(Received 14 March 2006; published 1 August 2006)

Results to date

Physical Review Letters

PRL 99, 241103 (2007)

Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity

Holger Müller, 1,* Sheng-wei Chiow, 1 Sven Herrmann, 1 and Steven Chu 1, 2

Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics

Many more tests proposed.
ongoing searches with...

\[L_{LV} = L_{\text{pure gravity}} + L_{\text{fermion}} + L_{\text{photon}} + \cdots \]

Tests based on

Results to date

Many more tests proposed. See Mike Seifert’s talk.
Ongoing searches with...

\[L_{LV} = L_{\text{pure gravity}} + L_{\text{fermion}} + L_{\text{photon}} + \cdots \]

- spin-polarized solids (Adelberger, Heckel, …)
- clock comparisons (Gibble, Hunter, Romalis, Walsworth, …)
- CMB analysis
- astrophysical photon decay
- cosmological birefringence
- pulsar-timing observations
- particle traps (Dehmelt, Gabrielse, …)
- resonant cavities (Lipa, Mueller, Peters, Schiller, Wolf, …)
- neutrino oscillations (LSND, MINOS, Super K, …)
- muons (Hughes, BNL g-2)
- meson oscillations (BABAR, BELLE, DELPHI, FOCUS, KTeV, OPAL, …)
Ongoing searches with...

\[L_{LV} = L_{pure\, gravity} + L_{fermion} + L_{photon} + \cdots \]

- spin-polarized solids (Adelberger, Heckel, ...)
- clock comparisons (Gibble, Hunter, Romalis, Walsworth, ...)
- astrophysical photon decay
- cosmological birefringence
- pulsar-timing observations (Dehmelt, Gabrielse, ...)
- resonant cavities (Lipa, Mueller, Peters, Schiller, Wolf, ...)
- neutrino oscillations (LSND, MINOS, Super K, ...)
- muons (Hughes, BNL g-2)
- meson oscillations (BABAR, BELLE, DELPHI, FOCUS, KTeV, OPAL, ...)

Constraints on Torsion from Bounds on Lorentz Violation

V. Alan Kostelecky,^1 Neil Russell,^2 and Jay D. Tasson^1

^1 Physics Department, Indiana University, Bloomington, Indiana 47405, USA
^2 Physics Department, Northern Michigan University, Marquette, Michigan 49855, USA

PRL 100, 111102 (2008)
Ongoing searches with...

\[L_{LV} = L_{pure\, gravity} + L_{fermion} + L_{photon} + \ldots \]

- spin-polarized solids (Adelberger, Heckel, ...)
- clock comparisons (Gibble, Hunter, Romalis, Walsworth, ...)
- CMB analysis
- astrophysical photon decay
- cosmological birefringence
- pulsar-timing observations
- particle traps (Dehmelt, Gabrielse, ...)
- resonant cavities (Lipa, Mueller, Peters, Schiller, Wolf, ...)
- neutrino oscillations (LSND, MINOS, Super K, ...)
- muons (Hughes, BNL g-2)
- meson oscillations (BABAR, BELLE, DELPHI, FOCUS, KTeV, OPAL, ...)
Ongoing searches with...

\[L_{LV} = L_{pure gravity} + L_{fermion} + L_{photon} + \cdots \]

- spin-polarized solids (Adelberger, Heckel, ...)
- only \(~1/2\) of lowest order couplings explored
- use gravitational couplings and experiments to get more!

PRL 102, 010402 (2009)

PHYSICAL REVIEW LETTERS

Prospects for Large Relativity Violations in Matter-Gravity Couplings

V. Alan Kostelecký and Jay D. Tasson

Physics Department, Indiana University, Bloomington, Indiana 47405, USA

- resonant cavities (Lipa, Mueller, Peters, Schiller, Wolf, ...)
- neutrino oscillations (LSND, MINOS, Super K, ...)
- muons (Hughes, BNL g-2)
- meson oscillations (BABAR, BELLE, DELPHI, FOCUS, KTeV, OPAL, ...)

- particle traps (Dehmelt, Gabrielse, ...)

- only \(~1/2\) of lowest order couplings explored

- use gravitational couplings and experiments to get more!
gravitationally coupled fermions

\[L_{\text{fermion}} = \frac{1}{2} i e^1_a \bar{A}(^a_i c^o \epsilon^o \epsilon^o \epsilon^b : : :) \bar{D} \bar{A} \]

\[\bar{A}(m+a_1 e^1_a \epsilon^o \epsilon^a + : : :) \bar{A} \]

coefficients for Lorentz violation
• particle-species dependent

additional coefficients for LV, non-minimal torsion, ...

covariant derivative for spacetime as well as U(1)

Idea:
• new gravitational couplings provide new LV sensitivity
• explore \(a_1 \) coefficient unobservable in flat spacetime

Kostelecký, Tasson PRL '09

1) Kostelecký PRD '04
gravitationally coupled fermions

\[L_{\text{fermion}} = \frac{1}{2} i e^a \bar{A} (e^a c^a e^b \bar{A} + \cdots) \bar{D}_1 \bar{A} \]

coefficients for Lorentz violation
- particle-species dependent

additional coefficients for LV, non-minimal torsion, …

\[\overleftrightarrow{D}_\mu \] covariant derivative for spacetime as well as U(1)

Idea:
- new gravitational couplings provide new LV sensitivity
- explore \(a_1 \) coefficient unobservable in flat spacetime

Kostelecký, Tasson PRL ’09

What is the form of \(a_1 \)? Where does it come from?

1) Kostelecký PRD ’04
Lorentz-symmetry breaking

• explicit
 – Lorentz violation is a predetermined property of the spacetime
 – inconsistent with Riemannian geometry

• spontaneous
 – LV arises dynamically
 – consistent with geometry
 – possible in numerous underlying theories: string theory, quantum gravity …

• upon investigating spontaneous breaking we find

\[a_1 = \bar{a}_1 + \frac{1}{2} \mathcal{R} a \cdot h_1 \cdot i + \frac{1}{4} \mathcal{R} a \cdot h \cdot i \]

characterize couplings in dynamical theories
countershaded Lorentz violation

\[a_1 = \bar{a}_1 + \frac{1}{2} R a_1 \ h_1 \ i \ \frac{1}{4} R a_1 \ h. \]

- \(\bar{a}_1 \) for matter is unobservable in flat-spacetime tests
- Observable \(\bar{a}_1 \) effects are suppressed by the gravitational field
- \(\bar{a}_1 \) could be large (~1eV) relative to existing matter-sector bounds
 c.f. \(b < 10^{-30} \) GeV
path to experimental analysis

\[L_{\text{fermion}} \] expand to desired order in LV and gravity
\[\downarrow \text{field redefinition} \]
\[L'_{\text{fermion}} \]
\[\downarrow \text{Euler-Lagrange eq.} \]
\[H_{\text{Relativistic}} \rightarrow \text{relativistic quantum experiments} \]
\[\downarrow \text{Foldy-Wouthuysen expansion} \]
\[H_{\text{NonRel}} \rightarrow \text{non-relativistic quantum experiments} \]
\[\downarrow \text{inspection} \]
\[L_{\text{Classical}} \rightarrow \text{non-relativistic quantum experiments} \]
\[\text{classical experiments} \]
relativistic hamiltonian

\[H_{\text{rel}} = \frac{1}{2} \left(h_{jk} + h_{00, jk} \right) + i h_{j0} \partial_j + \frac{1}{2} m h_{00} \partial_j + \frac{1}{2} \left(\partial_j \partial^j + 5 \right) \partial_0 + i \frac{1}{2} \left(h_{jk} \partial_j + h_{00, jk} \right) \]

\[+ \frac{1}{2} \left(i \left(h_{j0} \partial_j + h_{00, j0} \right) \right) + \frac{1}{2} \left(h_{jk} \partial_j + h_{00, jk} \right) \partial_0 \]
Experimental implications

\[F_3 = m^T g_i \ 2g \circ \ a_t^T + \frac{m^T}{m_s} a_t^S + \cdots \]

S and T denote composite coefficients for source and test respectively.

- Gravimeter tests
- Tests of Weak Equivalence
 - Laboratory
 - Space based
- Lunar laser ranging
- Exotic tests
 - Charged matter
 - Antimatter
 - Higher generation matter
- Light-travel tests
- ...
experimental implications

\[F_3 = \sum_i m^T g_i \ 2g \mathring{a}_t^T + \frac{m^T}{m^S} a_t^S + \cdots \]

\[a_1^T = \sum_{w=p;n;e} N^w a_1^w \]

- gravimeter tests
- tests of Weak Equivalence
 - laboratory
 - space based
- Lunar laser ranging
- exotic tests
 - charged matter
 - antimatter
 - higher generation matter
- light-travel experiments
- ...

S and T denote composite coefficients for source and test respectively.
Sun-centered frame

- standard frame for reporting SME bounds

- boost and rotation of test \[\rightarrow \text{annual & sidereal variations} \]
lab tests
differential acceleration for test-particles A and B

• monitor acceleration of one particle over time → gravimeter
• monitor relative behavior of particles → EP test
• frequency and phase distinguish from other effects
experimental sensitivities

• one bound1 based on torsion-pendulum data2
\[|\alpha \bar{a}_T^e + \alpha \bar{a}_T^p - 0.8\alpha \bar{a}_T^n | < 1 \times 10^{-11} \text{ GeV} \]

• excellent prospects for remaining 11 coefficients in current and future experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$\alpha \bar{a}_T^w$, actual</th>
<th>$\alpha \bar{a}_J^w$, actual</th>
<th>$\alpha \bar{a}_J^w$, feasible</th>
<th>$\alpha \bar{a}_T^w$, future</th>
</tr>
</thead>
<tbody>
<tr>
<td>torsion pendulum</td>
<td>10^{-11} GeV</td>
<td>-</td>
<td>$[10^{-7}$ GeV]</td>
<td>-</td>
</tr>
<tr>
<td>falling corner cube</td>
<td>10^{-8} GeV</td>
<td>-</td>
<td>$[10^{-4}$ GeV]</td>
<td>-</td>
</tr>
<tr>
<td>atom interferometry</td>
<td>10^{-5} GeV</td>
<td>-</td>
<td>$[10^{-5}$ GeV]</td>
<td>${10^{-15}$ GeV$}$</td>
</tr>
<tr>
<td>supercond. gravimeter</td>
<td>-</td>
<td>-</td>
<td>$[10^{-6}$ GeV$}$</td>
<td>-</td>
</tr>
<tr>
<td>lunar laser ranging</td>
<td>-</td>
<td>-</td>
<td>$[10^{-6}$ GeV$}$</td>
<td>-</td>
</tr>
<tr>
<td>drop tower</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>${10^{-10}$ GeV$}$</td>
</tr>
<tr>
<td>balloon drop</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>${10^{-13}$ GeV$}$</td>
</tr>
<tr>
<td>bouncing masses</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>${10^{-14}$ GeV$}$</td>
</tr>
<tr>
<td>space-based WEP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>${10^{-13}$ - 10^{-16} GeV$}$</td>
</tr>
</tbody>
</table>

\[\] = crude estimate for existing experiment
\{} = crude estimate for future experiment

1) Kostelecký, Tasson PRL ’09 2) Schlamminginger et al. PRL ’08
experimental sensitivities

- one bound\(^1\) based on torsion-pendulum data\(^2\)
 \[
 |\alpha\tilde{a}^e_T + \alpha\tilde{a}^p_T - 0.8\alpha\tilde{a}^n_T| < 1 \times 10^{-11} \text{ GeV}
 \]

- excellent prospects for remaining 11 coefficients in current and future experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(\alpha\tilde{a}^w_T), actual</th>
<th>(\alpha\tilde{a}^w_J), actual</th>
<th>(\alpha\tilde{a}^w_J), feasible</th>
<th>(\alpha\tilde{a}^w_T), future</th>
</tr>
</thead>
<tbody>
<tr>
<td>torsion pendulum</td>
<td>(10^{-11}) GeV</td>
<td>-</td>
<td>[10^{-7}] GeV</td>
<td>-</td>
</tr>
<tr>
<td>falling corner cube</td>
<td>(10^{-8}) GeV</td>
<td>-</td>
<td>[10^{-4}] GeV</td>
<td>-</td>
</tr>
<tr>
<td>atom interferometry</td>
<td>(10^{-5}) GeV</td>
<td>-</td>
<td>[10^{-5}] GeV</td>
<td>{10^{-15}} GeV</td>
</tr>
<tr>
<td>supercond. gravimeter</td>
<td>(10^{-5}) GeV</td>
<td>-</td>
<td>[10^{-6}] GeV</td>
<td>-</td>
</tr>
<tr>
<td>lunar laser ranging</td>
<td>-</td>
<td>-</td>
<td>{10^{-10}} GeV</td>
<td>{10^{-13}} GeV</td>
</tr>
<tr>
<td>drop tower</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>{10^{-14}} GeV</td>
</tr>
<tr>
<td>balloon drop</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>{10^{-13} - 10^{-16}} GeV</td>
</tr>
<tr>
<td>bouncing masses</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>space-based WEP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\[\] = crude estimate for existing experiment
\{\} = crude estimate for future experiment

1) Kostelecký, Tasson PRL ’09 2) Schlamminginger et al. PRL ’08 3) Kostelecký, Tasson in prep.
Summary

Lorentz violation introduces qualitatively new signals in gravitational experiments

- several experiments performed
- much remains unexplored
- comparatively large
- detectable in current and planned tests
- multiple tests needed for maximum independent sensitivities