1) (i) Starting from
\[y \frac{df}{dy} - y \frac{d}{dx} \left(\frac{df}{dy} \right) = 0 \]

we see that this is total.

we note that since \(f(y, y') \) we have that
\[
\frac{df}{dx} = \frac{df}{dy} \cdot y + \frac{df}{dy'} \cdot y' dx = \frac{df}{dy} \cdot y \frac{dy}{dx} = \frac{df}{dy} \cdot \frac{dy}{dx} \cdot \frac{dy'}{dy} \cdot \frac{df}{dy'} = \frac{df}{dy} \cdot \frac{dy}{dx} \frac{dy'}{dy} \frac{df}{dy'}.
\]

Thus
\[
y \frac{df}{dy} - y \frac{d}{dx} \left(\frac{df}{dy} \right) = \frac{df}{dx} - \frac{df}{dy} \frac{dy}{dx} \frac{df}{dy'} = \frac{df}{dx} - \left(y \frac{df}{dy} \right) = \frac{df}{dx} - y \frac{df}{dy}.
\]

So the original equation is equivalent to
\[
\frac{df}{dx} - y \frac{df}{dy} = c \Rightarrow f - y \frac{df}{dy} = c
\]

(ii) For the brachistochrone we had \(f(y, y') = \sqrt{1 + y'^2} \).

so \(\frac{df}{dy} = \frac{y}{\sqrt{y(1+y'^2)}} \).

From (i) we see that
\[
\sqrt{\frac{1+y'^2}{y}} - \frac{y^2}{\sqrt{y(1+y'^2)}} = c \Rightarrow \frac{1}{\sqrt{y(1+y'^2)}} = c.
\]

\[
\Rightarrow y(1+y'^2) = \frac{1}{c^2} \Rightarrow \frac{y'^2}{c^2} = \frac{1}{c^2} - 1 \Rightarrow y' = \sqrt{\frac{1-c^2}{c^2}}.
\]

We can integrate this which gives
\[
K = \int \sqrt{\frac{c^2y}{1-c^2y}} \, dy.
\]

To perform the integral let \(y = a \sin^2 \frac{\theta}{2} \) where \(a = \frac{1}{c^2} \)

then \(dy = a \sin \frac{\theta}{2} \cos \frac{\theta}{2} \, d\theta \).
With this we have

\[x = \sqrt{\frac{a \sin^2 \theta}{a(1-\sin^2 \theta)}} \ a \sin \frac{x}{2} \cos \frac{x}{2} \ dy \]

\[= \sqrt{\frac{\sin \theta}{\cos \theta}} \ a \sin \frac{x}{2} \cos \frac{x}{2} \ dy = \int \sin^2 \frac{x}{2} \ dy \]

\[= b \quad (y - \sin y) + b \]

Choosing initial conditions \(x(0) = 0, y(0) = 0 \) implies \(y(0) = 0 \) mean that \(b = 0 \). Finally, absorbing the \(\frac{1}{2} \) into a
we arrive at \(x = a \left(y - \sin y \right) \)

We can rewrite \(y \) by noting that

\[\cos y = 1 - 2 \sin^2 \frac{y}{2} \implies 2 \sin^2 \frac{y}{2} = 1 - \cos y. \]

Thus \(y = a \left(1 - \cos y \right) \)

(iii) Consider \(L = T - V = \frac{1}{2} m q^2 - V(q) = L(q, q) \)

\[\implies \frac{\partial L}{\partial q} = m\dot{q}. \quad \text{So from (i) we have} \]

\[\frac{1}{2} m q^2 - V(q) - m q^2 = c \implies -\left[\frac{1}{2} m \dot{q}^2 + V(q) \right] = c \]

\[\implies T + V = \text{constant} \quad \text{so total energy is conserved.} \]

Notice that this is nothing more than \(h = q \frac{2L}{\partial q} - L \) being constant when \(L \) is independent of \(t \).
2. (i) The equation for a catenary is $x = a \cosh \left(\frac{y - b}{a} \right)$.

When $x_1 = x_2$ and $y_1 = y_2$,

$\Rightarrow a \cosh \left(\frac{y_1 - b}{a} \right) = a \cosh \left(\frac{y_2 - b}{a} \right) \Rightarrow b = 0$

From $x_2 = a \cosh \left(\frac{y_2}{a} \right)$ let $k = \frac{y_2}{a}$, $\alpha = \frac{x_2}{y_2}$

$\Rightarrow \frac{x_2}{y_2} = \cosh \left(\frac{y_2}{a} \right) \Rightarrow k \alpha = \cosh (k)$

(ii) Graphically, a \cosh looks much like a parabola. So we have the plot at the right, where $k \alpha$ is a line of slope α.

We see there are 3 regions:

(1) $\alpha > \alpha_0$: $k \alpha$ intersects the \cosh at 2 points.

(2) $\alpha = \alpha_0$: one solution

(3) $\alpha < \alpha_0$: no solution

(iii) To find α_0, we extremize $\frac{dx}{dk} = 0$.

So $k \alpha = \cosh (k) \Rightarrow \alpha + k \frac{d \alpha}{dk} = \sinh k$

$\Rightarrow \alpha = \sinh k$.

Plugging in we thus need to solve $k \sinh k = \cosh k$

$\Rightarrow k = \coth (k)$

Numerically $\Rightarrow k = 1.199679$

and $\alpha_0 = \sinh k = 1.508880$
3) \(T = \sum_i f_i (q_i) q_i^2, \quad V = \sum_i V_i (q_i) \)

(i) \(L = T - V = \sum \left[f_i (q_i) \dot{q}_i^2 - V_i (q_i) \right] = \sum L_i (q_i, \dot{q}_i) \)

So the Lagrangian separates and the EoM must also.

Explicitly, the EoM become

\[
\frac{d}{dt} \left[2 f_i (q_i) \dot{q}_i \right] - \frac{\partial f_i}{\partial q_i} \ddot{q}_i + \frac{\partial V_i}{\partial q_i} = 0 \quad \text{for each } i.
\]

(ii) \(T = \frac{1}{2} q^2 \dot{q}^2 \), \(V = \frac{1}{2} k q^2 \) \(\Rightarrow \) \(L = \frac{1}{2} q^2 \dot{q}^2 - \frac{1}{2} k q^2 \)

EoM: \(\frac{d}{dt} (q^2 \dot{q}) - q \dddot{q} + k \dot{q} = 0 \)

\(\Rightarrow \) \(q \dddot{q} + q^2 \ddot{q} - q \dddot{q} + k \dot{q} = 0 \). Multiply by \(q \) to get \(q \dot{q}^3 + q^2 \ddot{q} + kq \dot{q} = 0 \), which is a total derivative

\(\Rightarrow \) \(\frac{1}{2} \frac{d}{dt} (q^2 \dot{q}^2) + \frac{1}{2} k \frac{d}{dt} q^2 = 0 \) \(\Rightarrow \) \(\frac{d}{dt} (q^2 \dot{q}^2 + kq^2) = 0 \)

\(\Rightarrow \) \(q^2 \dot{q}^2 + kq^2 = a \) where \(a \) is a constant

\(\Rightarrow \) \(\dot{q} = \sqrt{\frac{a - kq^2}{q^2}} \) \(\Rightarrow \) \(t = \int \sqrt{\frac{q^2}{a - kq^2}} \) dq

\(\Rightarrow \) \(t = -\sqrt{\frac{a - kq^2}{k}} + b \), inverting we have

\[
q(t) = \frac{a - k^2 (t - b)^2}{k}
\]

This can be plugged back into the EoM to verify it is correct!
For the general L from (i) the Eqn is
\[\frac{d}{dt} \left(2 \mathbf{f}_i \dot{\mathbf{q}}_i \right) - \frac{\partial \mathbf{f}_i}{\partial \mathbf{q}_i} \mathbf{q}_i \dot{\mathbf{q}}_i^2 + \frac{\partial \mathbf{V}_i}{\partial \mathbf{q}_i} = 0 \]

Since \(\mathbf{f}_i (\mathbf{q}_i) \) \(\Rightarrow \) \[\frac{d \mathbf{f}_i}{dt} = \frac{\partial \mathbf{f}_i}{\partial \mathbf{q}_i} \mathbf{q}_i \]

\[\Rightarrow \frac{d}{dt} \mathbf{f}_i \dot{\mathbf{q}}_i + 2 \mathbf{f}_i \dot{\mathbf{q}}_i \dot{\mathbf{q}}_i - \frac{\partial \mathbf{f}_i}{\partial \mathbf{q}_i} \dot{\mathbf{q}}_i^2 + \frac{\partial \mathbf{V}_i}{\partial \mathbf{q}_i} = 0 \]

Multiplying by \(\dot{\mathbf{q}}_i \) gives
\[\frac{d}{dt} \mathbf{f}_i \dot{\mathbf{q}}_i^2 + 2 \mathbf{f}_i \mathbf{q}_i \dot{\mathbf{q}}_i \dot{\mathbf{q}}_i - \dot{\mathbf{q}}_i \frac{\partial \mathbf{V}_i}{\partial \mathbf{q}_i} = 0 \]

\[\Rightarrow \frac{d}{dt} \left(\mathbf{f}_i \dot{\mathbf{q}}_i^2 \right) = - \frac{d \mathbf{V}_i}{dt} \]

\[\Rightarrow \mathbf{f}_i \dot{\mathbf{q}}_i^2 = - \mathbf{V}_i + a \]

\[\Rightarrow \dot{\mathbf{q}}_i^2 = \frac{a - \mathbf{V}_i}{\mathbf{f}_i} \]

\[\Rightarrow t = \int \sqrt{\frac{\mathbf{f}_i (\mathbf{q}_i)}{a - \mathbf{V}_i (\mathbf{q}_i)}} \, d\mathbf{q}_i \]

Notice with \(\mathbf{f}_i (\mathbf{q}_i) = \mathbf{q}^2 \) this reproduces (ii).
i) Using the suggested coordinates

\[T = \frac{1}{2} m_1 (\dot{x}_1^2 + \dot{y}_1^2) + \frac{1}{2} m_2 (\dot{x}_2^2 + \dot{y}_2^2) \]

\[V = \frac{1}{2} k (l - l_0)^2 \]

with the constraints \(x_1^2 + y_1^2 = a^2 \), \(x_2^2 + y_2^2 = b^2 \),
\[l^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 + c^2 \]

Thus we have

\[L = \frac{1}{2} m_1 (\dot{x}_1^2 + \dot{y}_1^2) + \frac{1}{2} m_2 (\dot{x}_2^2 + \dot{y}_2^2) - \frac{1}{2} k (l - l_0)^2 \]

\(f_1 = x_1^2 + y_1^2 - a^2 \), \(f_2 = x_2^2 + y_2^2 - b^2 \)
\[f_3 = (x_1 - x_2)^2 + (y_1 - y_2)^2 + c^2 - l^2 \]

ii) EoM:

\[\begin{align*}
\ddot{x}_1: & \quad m_1 \ddot{x}_1 = -2 \lambda_1 x_1 + y_1, \\
\ddot{y}_1: & \quad m_1 \ddot{y}_1 = -2 \lambda_1 y_1 - 2 \lambda_3 (x_1 - x_2) \cup \text{constraints} \\
\ddot{x}_2: & \quad m_2 \ddot{x}_2 = -2 \lambda_2 x_2 + 2 \lambda_3 (x_1 - x_2) \\
\ddot{y}_2: & \quad m_2 \ddot{y}_2 = -2 \lambda_2 y_2 + 2 \lambda_3 (y_1 - y_2) \\
l: & \quad k (l - l_0) = 2 \lambda_3 l
\end{align*} \]
From the eqn for I, we see that λ_3 looks like the force from a spring (Hooke's law):

$$\lambda_3 \propto -2\lambda_1 (x_1 - x_2)$$

From $x_1 = \gamma_0 + \gamma_2$ we see that

$$m\ddot{x}_1 = -2\lambda_1 x_1 - 2\lambda_3 (x_1 - x_2), \quad \text{and similarly for } y_1.$$

This is Newton's second law with 2 forces, the spring force and one that goes like $-2\lambda_1 x_1$ and $-2\lambda_1 y_1$.

This is a force $\bar{F} = -2\lambda_1 (x_1 \dot{x}_1 + y_1 \dot{y}_1)$.

This is exactly a "normal" or "tension" force that holds M_1 on the circle.

Thus λ_1 and λ_2 are the "normal" forces for these two particles.

iii) If $k=0$ then $\lambda_3 = 0$.

The constraint $x_1^2 + y_1^2 = a^2$ gives

$$\dot{x}_1 \dot{x}_1 + y_1 \dot{y}_1 = 0 \Rightarrow x_1 \dddot{x}_1 + x_1^2 + y_1 \dddot{y}_1 + y_1^2 = 0$$

$$\Rightarrow x_1 \dddot{x}_1 + y_1 \dddot{y}_1 = -\dot{x}_1^2 - \dot{y}_1^2 = -v_1^2.$$

Combining $x_1 \dddot{x} + y_1 \dddot{y}$ gives

$$m_1 (x_1 \dddot{x}_1 + y_1 \dddot{y}_1) = -2\lambda_1 (x_1^2 + y_1^2)$$

$$\Rightarrow -m_1 v_1^2 = -2\lambda_1 a^2 \Rightarrow \lambda_1 = \frac{m_1 v_1^2}{2a^2}$$

Similarly, for λ_2:

$$\lambda_2 = \frac{m_2 v_2^2}{2b^2}$$

Plugging back in we find

$$\dddot{x}_1 = -\frac{v_1^2}{a} x_1, \quad \dddot{y}_1 = -\frac{v_1^2}{a} y_1$$

These are precisely Newton's second law for a particle moving in a circle.

The term $\frac{v^2}{a} (x_1 \dot{x}_1 + y_1 \dot{y}_1)$ is the centripetal acceleration.
(i) This is a central potential independent of time so we immediately know that angular momentum and energy are conserved. Thus the equation of motion can be written as first integrals:

\[
\begin{align*}
\dot{\theta} &= \frac{l}{m r^2} \\
\dot{r} &= \pm \sqrt{E^2 - \frac{l^2}{2m r^2} + \frac{k}{r} e^{-\alpha r}}
\end{align*}
\]

This behavior differs from gravity (for \(l \neq 0\)).

- For small \(r\): \(V_{eff} \sim \frac{l^2}{2mr^2}\) (like gravity)
- For large \(r\): \(V_{eff} \sim \frac{l^2}{2mr^2}\), since \(e^{-\alpha r} \to 0\), this is unlike gravity.

In both of these limits \(V_{eff} > 0\) so we will only have a minimum with \(V_{eff} < 0\) if \(l\) is not too large.

Thus we require \(\frac{l^2}{2mr^2} - \frac{k}{r} e^{-\alpha r} < 0\) \(\Rightarrow l^2 < 2mk e^{-\alpha r}\)

\[\Rightarrow l_{\text{max}} \approx \sqrt{2mk} e^{-\alpha r/2}\]

For \(l > l_{\text{max}}\) the Yukawa term never dominates so we do not have an extremum which means no circular orbit.
(i) \(\text{Let } \frac{dv}{dr} \bigg|_p = 0 \)

\[0 = -\frac{l^2}{mr^3} + \left(\frac{k}{r^2} + \frac{k}{ar^2} \right) e^{-r/a} \]

\[\Rightarrow \frac{1}{m} \frac{d^2}{dr^2} = k \rho (1 + \frac{r}{a}) e^{-r/a} \Rightarrow \frac{l^2}{m ka} = \frac{p}{a} (1 + \frac{p}{a}) e^{-r/a}. \]

Let \(\alpha = \frac{l^2}{m ka}, \quad \chi = \frac{r}{a} \), then this equation is of the form

\[\alpha = \chi (1 + \chi) e^{-\chi} \equiv g(\chi). \] Notice that \(\chi \) is a maximum when \(\chi \) is a maximum.

\[\alpha_{\text{max}} \text{ occurs when } \frac{d\alpha}{d\chi} = 0 = \left[1 + \chi + \chi - \chi (1 + \chi) \right] e^{-\chi} \]

\[\Rightarrow 1 + \chi - \chi^2 = 0 \Rightarrow \chi = 1 + \frac{\sqrt{5}}{2}. \] We require \(p > 0 \Rightarrow \chi > 0 \)

\[\Rightarrow \chi = \frac{1 + \sqrt{5}}{2} = \phi \] the golden ratio!

Thus \(\alpha_{\text{max}} = g(\phi) \approx 0.84 \Rightarrow \alpha_{\text{max}} = \sqrt{g(\phi) m ka} \approx 0.92 m ka \)

For this orbit \(p = \phi a \approx 1.62 a \)

(iv) \(\text{We can proceed in a few ways. We could start from the EOM and perturb it or use one of our intermediate results from the general development. Here I start from } \)

\[\beta^2 = 3 + \left(\frac{r}{f} \frac{df}{dr} \right) \bigg|_p. \]

For \(V = -\frac{k}{r} e^{-r/a} \Rightarrow f = -\frac{dV}{dr} = -k \left(\frac{1}{r^2} + \frac{1}{ar^2} \right) e^{-r/a} \]

\[\Rightarrow \frac{df}{dr} = -k \left(-\frac{2}{r^3} - \frac{1}{ar^2} - \frac{1}{ar^2} - \frac{1}{a^2 r} \right) = k \left(\frac{2}{r^3} + \frac{2}{ar^2} + \frac{1}{a^2 r} \right) e^{-r/a}. \]
\[
\frac{\partial g}{\partial f} = - \frac{\rho}{1 + \alpha \rho} \left(2 + \frac{2}{\alpha} \rho + \frac{1}{\alpha^2} \rho^2 \right) = - \frac{1}{1 + \alpha \rho} \left(2 + \frac{2}{\alpha} \rho + \frac{1}{\alpha^2} \rho^2 \right).
\]

For \(\alpha \rho \ll 1 \) we expand to 2nd order in \(\alpha \rho \) (since the first order term cancels):

\[
\left(\frac{\partial g}{\partial f} \right) \approx \left(1 - \frac{\rho}{\alpha^2} \right) \left(2 + \frac{2}{\alpha} \rho + \frac{\rho^2}{\alpha^2} \right) - \frac{\rho^2}{\alpha^2} + \frac{1}{\alpha^3} \rho^3.
\]

Thus \(\beta^2 = 3 - 2 - \frac{\rho^2}{\alpha^2} = 1 - \frac{\rho^2}{\alpha^2} \).

So \(\beta = \sqrt{1 - \frac{\rho^2}{\alpha^2}} \approx 1 - \frac{1}{2} \frac{\rho^2}{\alpha^2} \).

After one orbit the particle will not return to the same point, instead:

\[
\Delta \theta = 2\pi (1 - \beta) = 2\pi \left(1 - 1 + \frac{1}{2} \frac{\rho^2}{\alpha^2} \right).
\]

\[
\Delta \theta = \pi \frac{\rho^2}{\alpha^2}.
\]
\(\rho = \text{constant} \Rightarrow \rho = \frac{M(r)}{\frac{4}{3} \pi r^3} = M(r) = \frac{4}{3} \pi r^3 \rho. \)

(i) From Gauss' law, a planet of mass \(m \) at a distance \(r \) from the Sun will feel an additional gravitational force from the mass inside radius \(r \). Thus

\[
\vec{F}(r) = -\frac{GMmM(r)}{r^2} \hat{r} = -\frac{4}{3} \pi r^3 \rho \frac{GMm}{r^2} \hat{r}
\]

So

\[
\vec{F}(r) = -Cm \hat{r}
\]

where \(C = \frac{4}{3} \pi r^3 \rho G \).

(ii) Our equation of motion now becomes

\[
m \ddot{r} = \frac{\ell^2}{mr^3} - \frac{\hbar}{r^2} - mC \dot{r}.
\]

For a circular orbit, \(\ddot{r} = 0 \) at \(r = r_0 \)

\[
\Rightarrow \frac{d^2}{dr_0^2} = \frac{\hbar}{r_0^2} + mC r_0.
\]

So

\[
\ell = \sqrt{mk^2 r_0 + m^2 C r_0^4}.
\]

Angular momentum is still conserved (this is a central force) with

\[
\ell = mr_0^2 \Rightarrow \theta = \omega = \frac{\ell}{mr_0^2}.
\]

Thus

\[
W = \frac{\ell}{mr_0^2} = \frac{\hbar}{mr_0^2} \sqrt{mk^2 r_0 + m^2 C r_0^4} = \frac{\hbar}{mr_0^2} \sqrt{1 + \frac{mC}{k} r_0^3}
\]

\[
= \sqrt{\frac{\hbar}{mr_0^2}} \sqrt{1 + \frac{mC}{k} r_0^3}.
\]

The period is given by \(T = \frac{2\pi}{\omega} \). For gravity (Kepler's 3rd law)

Circular orbits have \(T_0 = 2\pi \sqrt{\frac{mr_0^3}{k}} \).

Thus

\[
T = T_0 \left(1 + \frac{mC}{k} r_0^3 \right)^{-1/2} \approx T_0 \left(1 - \frac{mC}{2k} r_0^3 \right).
\]
2) cont.

(iii) Let \(r = r_0 + Sr \). Again we can proceed in a number of ways. Here I will go back to the EqM. Plugging in this \(r \) we find after expanding

\[
M \frac{d^2 Sr}{dt^2} = \frac{l^2}{Mr^3} \left(\frac{1}{3} \frac{5 \frac{d^r}{r_0}}{r_0} \right) - \frac{k}{r_0^2} \left(\frac{1}{4} \frac{2 \frac{d^r}{r_0}}{r_0} \right) - mCr_0 \left(\frac{1}{4} \frac{8 \frac{d^r}{r_0}}{r_0} \right).
\]

leading order terms cancel for a circular orbit.

\[
\Rightarrow \frac{d^2 Sr}{dt^2} = \left(- \frac{3l^2}{Mr^3} + \frac{2k}{r_0^2} - Cr_0 \right) \frac{Sr}{r_0} = \frac{k}{Mr^3} \left(\frac{1}{4} + \frac{4mCr^3}{r_0} \right) \frac{Sr}{r_0}
\]

Using (ii) to simplify.

So we have a SHO with frequency

\[
\omega_r = \sqrt{\frac{k}{Mr^3}} \sqrt{1 + \frac{4mCr^3}{r_0}}, \quad \text{using } \tau_r = \frac{2\pi}{\omega_r} \text{ we have}
\]

\[
\tau_r = \tau_o \left(1 + \frac{4mCr^3}{r_0} \right)^{-\frac{1}{4}} \approx \tau_o \left(1 - \frac{2mCr^3}{r_0} \right)
\]

(iv) In (iii) we calculated \(\tau_o \), in (iii) we found \(\tau_r \). To leading order we see they are the same (as expected from Newtonian gravity).

To make them easier to manipulate notice we can rewrite them as

\[
\tau_o = \tau_o \left(1 - \frac{C \tau_o^2}{8\pi^2} \right), \quad \tau_r = \tau_o \left(1 - \frac{C \tau_o^2}{2\pi^2} \right).
\]

Since \(\tau_o > \tau_r \) the particle will travel from \(r = 0 \) back to \(r = 0 \) in less time than \(\tau_o \) goes from 0 to \(2\pi \). Thus we should find the precession frequency is negative, \(\omega_p < 0 \).

We calculate this as

\[
\omega_p = \frac{2\pi}{\tau_o} - \frac{2\pi}{\tau_r} \approx 2\pi \tau_o \left[1 + \frac{C \tau_o^2}{8\pi^2} - 1 - \frac{C \tau_o^2}{2\pi^2} \right] = - \frac{2\pi}{\tau_o} \left(\frac{3C \tau_o^2}{8\pi^2} \right)
\]

\[
\Rightarrow \omega_p = - \frac{3C \tau_o}{8\pi} = - \frac{3C}{2} \frac{\sqrt{mr^3}}{r_0}
\]
\[V(r) = -\frac{k}{r} + \frac{l}{r^2} \]

(i) We can proceed in a few ways. One is to note that we still have a central potential so \(l = m r^2 \dot{\phi} \) is still a conserved quantity.

From the Lagrange we can derive the GoM and will find

\[\ddot{r} = -\frac{k}{r^2} + \frac{l^2 + 2m \hbar}{mr^3} \]

Alternatively we also know energy is conserved. This can be used to derive a first order differential equation:

\[E = \frac{1}{2} m \dot{r}^2 + \frac{l^2}{2mr^2} - \frac{k}{r} = \frac{1}{2} m \dot{\phi}^2 - \frac{k}{r} + \frac{l^2 + 2m \hbar}{2mr^2} \]

In both cases we see the equations look exactly like gravity but with a modified angular momentum \(l' = l^2 + 2m \hbar \); this quantity is also conserved (since \(l \) is conserved and \(2m \hbar \) is just a constant).

To connect this to our usual way of describing the motion let \(l' = m r^2 \dot{\phi} \) where we introduce a new angular quantity \(\phi \). It is related to the usual \(\Theta \) since

\[\frac{l'}{l} = \frac{mr^2 \dot{\phi}}{mr^2 \dot{\Theta}} \Rightarrow \phi = \frac{l'}{l} \Theta \]

If we choose \(\phi(0) = \Theta(0) = 0 \) then we can write the orbit

\[r(\phi) = \frac{l^{\prime 2}}{m \hbar} \left(\frac{1}{1 + e' \cos(\phi)} \right) \]

Notice the primes appearing. This is the same form as \(r(\Theta) \) but now using \(l' \) and \(\phi \).

Thus

\[r(\phi) = \frac{l^{\prime 2}}{m \hbar} \left(\frac{1}{1 + e' \cos(\phi/2)} \right) \]

This describes a precessing ellipse if \(l' \neq 0 \).
(iii) Notice that \(l'^2 = l^2 + 2ml = \frac{l^2 + 2ml + m^2l^2}{l^2} \)
\[= l^2 \left(1 + \frac{2ml}{l^2} \right) = l^2 \left(1 + \frac{m}{l^2} \right). \]

If \(\frac{m}{l^2} \ll 1 \) then \(l' \approx l \sqrt{1 + 2m \frac{l}{l^2}} \approx l \left(1 + \frac{m}{l^2} \right) \).

Let \(l' = m \rho \dot{\Theta} + m \rho^2 \Omega \) for some new angular frequency \(\Omega \).

\[l' = m \rho \dot{\Theta} \left(1 + \frac{\Omega}{\dot{\Theta}} \right) = l \left(1 + \frac{\Omega}{\dot{\Theta}} \right) \]

Comparing to the previous expression for \(l' \) we see

\[\Omega = \frac{m \rho \dot{\Theta}}{l^2} = \frac{2\pi \rho \dot{\Theta}}{2\pi l^2} \quad \text{where} \quad \dot{\Theta} = \omega = \frac{2\pi}{T}. \]

(iii) The eccentricity is given by \(e = \sqrt{1 - \frac{c^2}{a^2}} \) so \(l'^2 = (1-e^2)ka \)

Thus \(\Omega = \frac{2\pi \rho \dot{\Theta}}{2\pi (1-e^2)ka} \Rightarrow \frac{\Omega}{\rho \dot{\Theta}a} = \frac{2\pi}{2\pi (1-e^2)} \quad \Omega = \eta \)

Using \(e = 0.2016, \quad \tau = 0.24 \text{yr}, \quad \Omega = 40'' \text{year}^{-1} \)

we find \(\eta = \frac{\Omega}{\dot{\Theta}a} = 7.1 \times 10^{-8} \)

(iv) Though the additional term has the same form as angular momentum, it is NOT the angular momentum that goes into determining the motion. In other words, the \(l \) of the system has not actually changed due to the perturbation and it is \(l \) that determines the motion.