LECTURE 26 CHECKPOINTS

1. What is the net force in terms of F and N on any one of the N identical blocks in the system on p. 1?
 \[F_{net}^m = ma = m \frac{F}{N} = \left(\frac{F}{N} \right) \text{ checks with } \]
 \[\text{force } \frac{F_n}{N} - \frac{F_{n-1}}{N} = \left(\frac{i-h}{N} \right) F \]

2. What is the net force on any one of the N identical blocks in the system in HW26-1(b) on p. 2?
 \[F_{net}^m = 0 \Rightarrow a = 0 \]
 \[\Rightarrow F_{net}^m = ma = 0 \]

3. In HW26-3, if the locomotive pulls on the 300 cars with the same force that they pull back on it, how can anybody move?

 The locomotive is pushing against the tracks/Earth!

 (The cars' wheels are free with no friction.)

 i.e. The pull is not the only force on the locomotive.

4. As we add more kids equally to both sides, so that there are 2N kids overall, how does the outermost tension change and how does the middle tension change?

 \[T_{out} = F \text{ unchanged} \]

 \[F - T_{out} = ma \]

 Middle: consider half of kids

 \[NF - T_{mid} = N \text{m} \Rightarrow 0 \]

5. Check that the results \(ma = \frac{1}{5} F, T_3 = \frac{8}{5} F, T_4 = \frac{4}{5} F \) are a solution of the force equation for the fourth kid from the left:

 \[4^{th} \text{ kid: } F + T_4 - T_3 = \frac{7}{5} F \]

 \[(1: \frac{4}{5} - \frac{8}{5} \text{ F} = \frac{1}{5} F) \checkmark \]

6. What is the torque, about the point O indicated in the figure, due to the weight of the uniform brick shown?

 \[\tau_{tangential} = + mg \frac{L}{2} \rightarrow \theta \]

7. What is wrong with each term for the net torque around the bottom-right corner of the door using our usual conventions (CCW = +)?

 \[\tau = \text{clockwise units} \times \text{negative units} \text{ (need mg)} \]

8. What is the horizontal position of the overall CM for n identical bricks if the horizontal position of the CM of the first n-1 of them altogether is at the origin and the other brick’s CM is at x?

 \[X_{one\ brick} = \frac{m}{n} x \]

 \[X_{n\ bricks} = \frac{m x + (n-1)m}{n} \]

 \[= \left(\frac{n x}{n-1} \right) \text{ famous problem} \]