Phys.116 Exam II
19 July 2004

Please do not turn the page until you are told to do so. When you do so, make sure that you have all three problems on your copy of the test.

In order to get credit on a problem, you must show your work. If you only write down an answer without the work leading up to it, you will get no credit for it, even if it is the right answer.
1. A flexible, circular conducting loop of radius 0.15 m and resistance 4.0 Ω lies in a uniform magnetic field of 0.25 T. The loop is pulled on opposite sides by equal forces and stretched until its enclosed area is essentially zero m², as suggested in the drawings. It takes 0.30 s to close the loop.

a. (7 points) Determine the magnitude of the emf induced in the loop.

b. (7 points) At what rate is heat generated in the loop?

c. (6 points) What is the direction of the induced magnetic field generated by the current induced in the loop while the loop is being stretched?
2. Two long, straight wires separated by 0.10 m carry currents of 18 A and 6 A in the same direction as shown.

a. (7 points) Determine the magnitude of the magnetic field at the point P.

b. (6 points) What is the direction of the magnetic field at the point P?

c. (7 points) What is the force per unit length (magnitude and direction) that the 6 A current exerts on the 18 A current?
3. In an experiment designed to measure the strength of a uniform magnetic field, electrons are accelerated from rest (by means of an electric field) through a potential difference of 350 V. After leaving the region of the electric field, the electrons enter a magnetic field and travel along a curved path because of the magnetic force exerted on them. The radius of the path is measured to be 7.50 cm.

a. (5 points) Sketch on the diagram the subsequent circular trajectory.

b. (5 points) Calculate the kinetic energy of the electron after it has been accelerated through the potential difference.

c. (5 points) Calculate the velocity of the electron.

d. (5 points) Assuming the magnetic field is perpendicular to the beam, what is the magnitude of the field?